Module Introduction to Segment Tree and Binary Indexed Tree

Introduction to Segment Tree and Binary Indexed Tree

**Frequency: 10/10** Segment trees and binary indexed trees (BIT) are indispensable data structures in competitive programming, enabling efficient range queries and updates over arrays. Generally speaking, Segment Tree is more versatile while BIT have a lower constant factor. Since BIT can be a bit tricky to understand at first, most people choose to start with Segment Tree. And you should choose Segment Tree too.

Resources

- [CP Algorithms: Segment Tree](https://cp-algorithms.com/data_structures/segment_tree.html) - [CP Algorithms: Fenwick Tree](https://cp-algorithms.com/data_structures/fenwick.html)

Problems

Point update, sum query 840 / 856 1400
Point update, minimum query 742 / 777 1400
Range update, sum query 691 / 733 1400
Range update, minimum query 634 / 651 1400
Apple picking 422 / 505 1500
Non-negative subarray 429 / 471 1500
Inversions 383 / 394 1500
K-query 424 / 443 1500
Divisible by 3 389 / 417 1500
Mushroom harvesting 241 / 252 1500
KSS 222 / 268 1500
D-query 339 / 361 1600
Greatest subarray sum 300 / 320 1600
Copying data 203 / 212 1600
Within 1 209 / 241 1600
Within 2 196 / 215 1600
Ladder update 210 / 228 1700
Racing 112 / 131 1700
One time 148 / 178 1800
Subarray XOR 141 / 150 1800
String sorting 134 / 168 1900
Odd query 40 / 65 2000
Full sequence 22 / 33 2000